光谱仪的分类光谱仪的种类很多,分类方法也很多,根据光谱仪所采用的分解光谱的原理,可以将其分成两大类:经典光谱仪和新型光谱仪。经典光谱仪是建立在空间色散(分光)原理上的仪器;新型光谱仪是建立在调制原理上的仪器,故又称为调制光谱仪。经典光谱仪依据其色散原理可将仪器分为:棱镜光谱仪、衍射光栅光谱仪、干涉光谱仪。原子吸收光谱仪维护与保养主要从光源、原子化系统、光学系统、气路系统四个方面着手,具体的操作如下:1、光源空心阴极灯应在允许工作电流以下范围内使用。不用时不要点灯,否则会缩短灯的使用寿命;但长期不用的元素灯则需每隔一两个月在额定工作电流下点燃15~60min,以免性能下降。光源调整机构的运动部件要定期加油润滑,防止锈蚀甚至卡死,以保持运动灵活自如。2、原子化系统每次分析操作完毕,特别是分析过高浓度或强酸样品后,要立即喷约数分钟的蒸馏水,以防止雾化筒和燃烧头被沾污或锈蚀。点火后,燃烧器的整个缝隙上方应是一片燃烧均匀呈带状的蓝色火焰。若带状火焰中间出现缺口,呈锯齿状,说明燃烧头缝隙上方有污物或滴液,这时需要清洗,清洗的方法是接通空气,关闭乙炔的条件下,用滤纸插入燃烧缝隙中仔细擦试;如效果不佳可取下燃烧头用软毛刷刷洗;如已形成熔珠,可用细的金相砂纸或刀片轻轻磨刮以去除沉积物.应注意不能将缝隙刮毛.雾化器就经常清洗,以避免雾化器的毛细管发生局部堵塞.若堵塞一旦发生,会造成溶液提升量下降,吸光度值减小.若仪器暂时不用,应用硬纸片遮盖住燃烧器缝口,以免积灰.对原子化系统的相关运动部件要进行经常润滑,以保证升降灵活.空气压缩机一定要经常放水、放油,分水器要经常清洗。3、光学系统外光路的光学元件就经常保持干净,一般每年至少清洗一次。如果光学元件上有灰尘沉积、可用擦镜纸擦净;如果光学元件上沾有油污或在测定样品溶液时溅上污物,可用预先浸在乙醇的混合液(1:1)中洗涤过并干燥了的纱布去擦试,然后有蒸馏水冲掉皂液,再用洗耳球吹去水珠。清洁过程中,禁用手去擦及金属硬物或触及镜面。色器应始终保持干燥。4、气路系统由于气体通路采用聚乙烯塑料管,时间长了容易老化,所以要经常对气体进行检漏,特别是乙炔气渗漏可能造成事故。严禁在乙炔气路管道中使用紫铜、H62铜及银制零件,并要禁油,测试高浓度铜或银溶液时,应经常用去离子水中喷洗。当仪器测定完毕后,应先关乙炔钢瓶输出阀门,等燃烧器上火焰熄灭后再关仪器上的燃气阀,最后再关空气压缩机,以确保安全。紫外可见光谱仪利用一定频率的紫外可见光照射被分析的有机物质,引起分子中价电子的跃迁,它将有选择地被吸收。一组吸收随波长而变化的光谱,反映了试样的特征。紫外可见光谱仪涉及的波长范围是0.2--0.8微米,它在有机化学研究中得到广泛的应用。通常用作物质鉴定、纯度检查,有机分子结构的研究。在定量方面,可测定结构比较复杂的化合物和混合物中各组分的含量,也可以测定物质的离解常数,络合物的稳定常数,物质分子量鉴别和微量滴定中指示终点以及在液相色谱中作检测器等。紫外可见光谱仪可测定很多物质:不含锡的纯铜中微量锑、茶叶中汞、纯铝金属材料中铋、纯镍金属材料中铋、粗铅中铋、催化剂中钯,铂,铱、大米粉中锌、大苏打中砷、稻米中锌、低合金钢中锰,钼、地下水中铜,镉、地质样品中钴、电镀废水中铬和总铬量,镉、电解铜中铋、定影液中银、独居石中铈组稀土、废氢化汞触媒浸取液中汞、废水中铈组稀土,金,镉,铜、钢铁中铈组稀土总量,钒,钴,铝,钼,铌,钛,锡,钇,稀土总量、高温合金中钽、工业废水中钒,镉,汞,钴,镍、谷物废溶液中钍、罐头食品中锡、硅钡孕育剂中钡、硅镁合金中钍、贵金属二次合金中钯、含铜试样中铋、合成氨触媒中钴、合金钢中钼,等等。在选择各种仪器时,都有一定的标准,如测量精度、或者测量范围。而在选择紫外可见光谱仪时,我们考虑的是光学构造、光谱范围、样品类型和分析工具。光学构造主要是指紫外分光光度计给出的光是单光束还是双光束。单光束是通过单束光进行测量,在测量过程中给定波长,然后通过被测物和对照物得到吸光结果。而双光束是通过一个斩光轮将光束一分为二。光源包括红外线、紫外线和可见光。钨灯和卤素灯一般只覆盖可见光部分。而氙灯则可以覆盖紫外光和可见光区域。紫外测油仪是依据国家环境水质监测紫外分光光度测油方法HJ970-2018,结合我国环境污染状况及各级环境监测部门的需要而研制开发的;是一种效率比较高、环保、方便、快捷的测油仪器,H970型紫外测油仪性能稳定、功能强大,能满足用户的应用需求。
光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。一台典型的光谱仪主要由一个光学平台和一个检测系统组成。包括以下几个主要部分:1. 入射狭缝: 在入射光的照射下形成光谱仪成像系统的物点。2. 准直元件: 使狭缝发出的光线变为平行光。该准直元件可以是一独立的透镜、反射镜、或直接集成在色散元件上,如凹面光栅光谱仪中的凹面光栅。3. 色散元件: 通常采用光栅,使光信号在空间上按波长分散成为多条光束。4. 聚焦元件: 聚焦色散后的光束,使其在焦平面上形成一系列入射狭缝的像,其中每一像点对应于一特定波长。5. 探测器阵列:放置于焦平面,用于测量各波长像点的光强度。该探测器阵列可以是CCD阵列或其它种类的光探测器阵列。光谱仪应用很广,在农业、天文、汽车、生物、化学、镀膜、色度计量、环境检测、薄膜工业、食品、印刷、造纸、喇曼光谱、半导体工业、成分检测、颜色混合及匹配、生物医学应用、荧光测量、宝石成分检测、氧浓度传感器、真空室镀膜过程监控、薄膜厚度测量、LED测量、发射光谱测量、紫外/可见吸收光谱测量、颜色测量等领域应用广泛。X射线光谱仪(rohs检测仪)通常可分为两大类,波长色散X射线荧光光谱仪(WDXRF)和能量色散X射线荧光光谱仪(EDXRF),波长色散光谱仪主要部件包括激发源、分光晶体和测角仪、探测器等,而能量色散光谱仪则只需激发源和探测器和相关电子与控制部件,相对简单。波长色散X射线荧光光谱仪使用分析晶体分辨待测元素的分析谱线,根据Bragg定律,通过测定角度,即可获得待测元素的谱线波长:nλ=2dsinaθ (n=1,2,3…)式中 ,λ为分析谱线波长;d为晶体的晶格间距;θ为衍射角;n为衍射级次。利用测角仪可以测得分析谱线的衍射角,利用上式可以计算相应被分析元素的波长,从而获得待测元素的特征信息。能量色散射线荧光光谱仪则采用能量探测器,通过测定由探测器收集到的电荷量,直接获得被测元素发出的特征射线能量:Q=kE式中,K为入射射线的光子能量;Q为探测器产生的相应电荷量;k为不同类型能量探测器的响应参数。电荷量与入射射线能量成正比,故通过测定电荷量可得到待测元素的特征信息。待测元素的特征谱线需要采用一定的激发源才能获得。目前常规采用的激发源主要有射线光管和同位素激发源等。为获得样品的定性和定量信息,除光谱仪外,还必须采用一定的样品制备技术,并对获得的强度进行相关的谱分析和数据处理。
根据光谱仪误差的性质及产生原因,误差可分为下面几种:1.系统误差的来源(1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。(2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。(3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。(4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统误差。(5)要消除系统误差,必须严格按照标准样品制备规定要求。为了检查系统误差,就需要采用化学分析方法分析多次校对结果。2.偶然误差的来源与样品成分不均圆二色光谱仪匀有关的误差。因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织结构的不均匀性,导致不同部位的分析结果不同而产生偶然误差。主要原因如下:(1)熔炼过程中带入夹杂物,产生的偏析等造成样品元素分布不均。(2)试样的缺陷、气孔、裂纹、砂眼等。(3)磨样纹路交叉、试样研磨过热、试样磨面放置时间太长和压上指纹等因素。(4)要减少偶然误差,就要精心取样,消除试样的不均匀性及试样的铸造缺陷,也可以重复多次分析来降低分析误差。3.其他因素误差(1)氩气不纯。当氩气中含有氧和水蒸气时,会使激发斑点变坏。如果氩气管道与电极架有污染物排不出去,分析结果会变差。(2)室内温度的升高会增加光电倍增管的暗电流,圆二色光谱仪降低信噪比。湿度大容易导致高压元件发生漏电、放电现象,使分析结果不稳定。
光谱仪质量影响4大因素1、狭缝光谱仪采用了一个复杂而又敏感的光学系统。光谱仪的环境温度,湿度,机械振动,以及大气压的变化,都会使谱线产生微小的变化而造成谱线的偏移。气压和湿度变化会改变介质的折射率,从而使谱线发生偏移,湿度的提高不仅会使空气的折射率增大,而且会对光学零件产生腐蚀作用,降底了仪器透光率,湿度一般应控制在55%-60%以下。温度对光栅的影响主要改变光栅常数,使角色散率发生变化,产生谱线漂移。这些变化会使光谱线不能完全对准相应的出射狭缝,从而影响分析结果。因此光学系统每天至少调整一次,若室内温度控制恒定.即使天气变化不大,每周也要调整狭缝二次。2、氩气吹氩的主要作用是试样激发时赶走火花室内的空气,减小空气对紫外光区谱线的吸收。主要是因为空气中近红外光谱(NIR)的氧气、水蒸气在远紫外区具有强烈的吸收带,对分析结果造成很大的影响,且不利于激发稳定,形成或加强扩散放电,激发时产生白点。另外,样品中的合金元素在高温情况下可能会与空气中成分发生化学反应生成分子化合物,从而会有分析光谱对我们所需的原子光谱造成干扰。因此必须要求氩气的纯度达到99.999%以上。另外,氩气的压力和流量也对分析质量有一定影响,它决定氩气对放电表面的冲击能力,这种激发能力必须适当,过低,不足以将试样激发过程中产生的氧气和它形成的氧化物冲掉,这些氧化物凝集在电极表面上,从而抑制试样的继续激发;氩气流量过大,一是造成不必要的浪费。二是对光谱仪也有一定的损伤。因此氩气压力和流量必须适当。据实践证明,氩气的压力和流量,应根据不同材质进行调节,对中低合金钢的分析,输入光谱仪的氩气压力近红外光谱(NIR)应达到0.5—1.5MPa,动态氩的流量为12~20个读数,静态氩的流量为3~5个读数。3、入射窗的透镜通向各室的透镜,特别是通向空气室的透镜,由于试样激发时吹氩,使得试样曝光时产生的灰尘被吹至透镜上而阻止了光线的透过,影响测定结果的准确性。因此要经常清洗,一般一周两次,使其保持清洁,保证所有光线通过透镜而进入光室进行测定。特别提醒的是,清洗透镜后要多激发几个废样,等强度稳定后再进行标准化操作,否则对分析质量造成影响。4、激发台清洗激发台的内表面,主要是避免残留内壁的粉尘放电影响分析结果。通常每激发100—200次应清理一次。电极与激发面之间的距离,必须按极距要求调整好,如果与激发面的距离太大,试样不易激发,如果电极与激发面的距离太小,曝光时放电电流太近红外光谱(NIR)大,以至于与仪器各参数不相匹配,使测定结果与实际结果之间有差异,影响测定的准确性。因此必须将电极与激发面的距离调整准确,清洗激发台和电极后一定要重视这个问题。光谱仪适用的四大领域生物领域:用于临床审定生物样中某特定成分的含量。别离纳米技术的特性,还可以在基因领域供给技术性的辅佐。食物领域:可以用来测量定食物样本中各种物质的含量,可以辅佐对食物的样本的残留物或营养成分的测定。制药领域:药物剖析师可以借光谱仪剖析药物的无效成分,也可以研讨药物动力学等,爲药品的研制供给了便利的研讨条件。环境剖析:通过对特别频谱的监测,可以把相应农产品的消费状况、农药运用状况和受净化状况等重要的数据展示出来。
荧光光谱仪又称荧光分光光度计,是一种定性、定量分析的仪器。通过荧光光谱仪的检测,可以获得物质的激发光谱、发射光谱、量子产率、荧光强度、荧光寿命、斯托克斯位移、荧光偏振与去偏振特性,以及荧光的淬灭方面的信息。荧光光谱仪可分为X射线荧光光谱仪和分子荧光光谱仪。相比较与传统的荧光光谱仪,405nm激光诱导荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点,适用于固体、粉末和液体的等样品的测量。主要应用领域为生物医疗、宝石鉴定、纳米材料、农业生产、石油化工等。1.体型小,功耗低;2.固体、液体、粉末均可检测;3.共聚焦设计,OD5的滤波效果。荧光光谱仪被广泛应用于化学、环境和生物化学领域。是研究小分子与核酸相互作用的主要手段。通过药物与核酸相互作用,使DNA与探针键合的程度减小,反映在探针荧光光谱的改变,从而可以了解药物和核酸的作用机理。荧光光谱仪是研究药物与蛋白质相互作用的常用仪器。药物与蛋白质相互作用后可能引起药物自身荧光光谱和蛋白质自身荧光(内源荧光)光谱以及同步荧光光谱的变化,如荧光强度和偏振度的改变、新荧光峰的出现等,这些均可以提供药物与蛋白质结合的信息。直读光谱仪的原理介绍直读光谱仪,英文名为OES(Optical Emission Spectrometer),即原子发射光谱仪,由于市场对钢铁检测有大的需求,也促进了相关检测仪器的发展。直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。直读光谱仪和ICP都属于发射光谱分析仪器,区别在于他们的激发方式不同,ICP中文名字是电感耦合等离子体,是通过线圈磁场达到高温使样品的状态呈等离子态然后进行测量的,而直读光谱仪一般采用电火花,电弧或者辉光放电的方式把样品打成蒸气进行激发的,在效果上ICP要比直读光谱仪器的检出限小,精度高,但是在进样系统上要求严格,没有好的进样系统就只能做溶液样品.光谱仪的定性分析方法光谱仪是一种常用的光学仪器,被广泛的应用于多个行业当中。光谱仪器的定性分析是指由于各种元素的原子结构不同,在光源的作用下都可以产生自己特征的光谱。如果一个样品经过激发摄谱在感光板上有几种元素的光谱出现,就证明这个样品有几种元素。这就是所谓的光谱定性分析方法,下面小编就来具体介绍一下光谱仪的定性分析方法吧。 1.比较光谱分析法:这种方法应用比较广泛,它包括标准试样比较法和铁谱比较法。标准样品比较法一般适用于单项定性分析及有限分析。铁谱比较法它不但可以做单项测定还便于做全分析。 2.谱线波长测量法:光谱分析仪器利用谱线波长测量法进行定性分析是先测出某一谱线的波长,再查表确定存在的元素,这种方法在日常分析中很少使用,一般只是在编制谱图或者做仲裁分析时才用。 一般来讲光谱分析仪器定性分析可以分析元素周期表上的70几个元素,但由于受到仪器和光源条件的限制有些元素如非金属及卤族元素等则需要在特殊的条件下才能测定。 光谱仪器定性分析的样品可以是多种多样的,所以光谱定性采用的方法各不相同,对于易导电的金属试样可以将试样本身作为电极直接用直流电孤或交流电孤光源分析。有时为了不损坏试样也可以采用火花和激光显微光源分析。对于有机物一般先进行化学处理,使之转化成溶液用溶液残渣法测定,也可以灼烧、灰化将试样处理成均匀的粉末装在碳电极孔中用直流电孤或交流电孤光源分析测定。 光谱仪器定性分析的特点是方法简单、速度快、需要样品量少并且任何形式的样品都可以分析。对于大部份元素都有比较高的灵敏度。光谱定性分析可以分析试样中一个或几个指定元素,也可以全分析试样中所有可能存在的元素。根据灵敏线的强弱来判断它们在试样中的大致含量。光谱定性分析只能给出试样中存在元素、的粗略含量范围,如大量、少量,还是微量。要想得到元素的正确含量就必须做光谱定量分析。
一般常见的光谱仪分为多道直读光谱仪、单道扫描型光谱仪、全谱直读型光谱仪,它们的工作原理如下。一、多道直读光谱仪摄谱仪的色散系统只有人射狭缝而没有出射狭缝,而光电光谱仪中,一个出射狭缝和--个光电倍增管构成--条光的通道(可安装多个固定的出射狭缝和光电倍增管)。从光源发出的光经透镜聚焦后,在入射狭缝上成像并进人狭缝。进入狭缝的光投射到凹面光栅上,凹面光栅将光色散,聚焦在焦面上,焦面上安装有一组出射狭缝,每一狭缝允许一条特定波长的光通过,投射到狭缝后的光电倍增管上进行检测,最后经计算机进行数据处理。多道直读光谱仪的优点是分析速度快,准确度优于摄谱法;光电倍增管对信号放大能力强,可同时分析含量差别较大的不同元素;适用于较宽的波长范围。但由于仪器结构限制,多道直读光谱仪的出射狭缝间存在一定距离,使利用波长相近的谱线有困难。多道直读光谱仪适合于固定元素的快速定性、半定量和定量分析。如这类仪器目前在钢铁冶炼中常用于炉前快速监控C、S、P等元素。二、单道扫描型光谱仪从光源发出的光穿过人射狭缝后,反射到一个可以转动的光栅上,该光栅将光色散后,经反射使某一条特定波长的光通过出射狭缝投射到光电倍增管上进行检测。光栅转动至某一固定角度时只允许一条特定波长的光线通过该出射狭缝,随光栅角度的变化,谱线从该狭缝中依次通过并进人检测器检测,完成- -次全谱扫描。和多道光谱仪相比,单道扫描光谱仪波长选择更为灵活方便,分析样品的范围更广,适用于较宽的波长范围,但由于完成一-次扫描需要一定时间,因此分析速度受到一定限制。三、全谱直读型光谱仪光源发出的光通过两个曲面反光镜聚焦于人射狭缝,人射光经抛物面准直镜反射成平行光,照射到中阶梯光栅上使光在X向上色散,再经另一个光栅(Schmidt光栅)在Y向上进行二次色散,使光谱分析线全部色散在一一个平面上,并经反射镜反射进人面阵型CCD检测器检测。由于该CCD是一个紫外型检测器,对可见区的光谱不敏感,因此,在Schmidt光栅的中央开一个孔洞,部分光线穿过孔洞后经棱镜进行Y向二次色散,然后经反射镜反射进人另一个CCD检测器对可见区的光谱(400~ 780nm)进行检测。这种全谱直读光谱仪不仅克服了多道直读光谱仪谱线少和单道扫描光谱仪速度慢的缺点,而且所有的元件都牢固地安置在机座上成为一个整体,没有任何活动的光学器件,因此具有较好的波长稳定性。
电话
咨询
在线咨询
微信咨询
回顶部